piatok, 30. augusta 2013

Vlny horúčav častejšie a plošne rozsiahlejšie

Budúci výskyt vĺn extrémne vysokých teplôt do roku 2040 už pravdepodobne neovplyvníme


Zatiaľ čo v prípade niektorých typov extrémneho počasia (tornáda, konvektívne búrky, atď.) je spojitosť ich výskytu a intenzity s klimatickou zmenou stále otázna a je predmetom intenzívneho výskumu, v prípade vĺn horúčav je toto prepojenie celkom jasné, a dnes už aj veľmi dobre zdokumentované početnými odbornými publikáciami. Tie ponúkajú celkom jasný obraz o tom, že už oteplenie o približne 0,5 °C od roku 1970 na globálnej úrovni významne prispelo k zvýšeniu pravdepodobnosti výskytu dlhých periód extrémne vysokých teplôt nad pevninami. Len v období posledného desaťročia sa v rôznych regiónoch sveta vyskytlo niekoľko pozoruhodných vĺn horúčav: západná Európa v roku 2003, stredná Európa v rokoch 2006 a 2007, Grécko v roku 2007, Austrália v roku 2009, Rusko v roku 2010, Texas v roku 2011, či Spojené štáty americké v roku 2012.


Obr. 1: Frekvencia výskytu 3-sigma (hore) a 5-sigma (dole) udalostí - vĺn horúčav počas letných mesiacov (jún-august) podľa výstupov modelov CMIP5 pre emisné scenáre RCP2.6 (vľavo) a RCP8.5 (vpravo) pre obdobie 2071-2099 (Zdroj)

Uvedené príklady boli extrémne nielen svojimi dôsledkami na úmrtnosť populácie či značné ekonomické straty, ale aj tým, že z pohľadu štatistiky teplotných charakteristík dosiahli priemerné teploty mesiacov, v ktorých sa vyskytli, extrémne vysoké odchýlky od dlhodobých priemerov (3-sigma a viac; 3-sigma je hodnota mesačnej teploty zodpovedajúca 3-násobku smerodajnej odchýlky od dlhodobého normálu, pričom z hľadiska pravdepodobnosti výskytu ide o 1 prípad z 370). A práve na takéto extrémne vlny horúčav (3-sigma a 5-sigma udalosti), trvajúce až niekoľko týždňov, sa zameral aj najnovší príspevok publikovaný v Environmental Research Letters. Autori v článku dospeli na základe porovnania viacerých modelových simulácií (použitím dvoch krajných emisných scenárov: RCP2.6 – optimistický a RCP8.5 – pesimistický scenár) k záveru, že situácie podobné tým zo západnej Európy v roku 2003 alebo z Rusku v roku 2010 môžu postihovať na pevninách už do roku 2020, resp. 2040 dvojnásobne, resp. štvornásobne väčšiu plochu než tomu je v súčasnosti.   


Obr. 2: Frekvencia výskytu mesačných teplotných extrémov zodpovedajúcich 1-, 2- a 3-sigma udalostí v kontrolnom období 2000-2012 podľa reálnych pozorovaní (vľavo) a modelových výstupov CMIP5 (vpravo; Zdroj)

Pozorované trendy
Štatistické analýzy hodnotiace extrémnosť a výskyt dlhotrvajúcich vĺn horúceho počasia poukazujú na to, že významné zvýšenie výskytu teplých periód nad prevažnou časťou pevnín súvisí s pozorovaným rastúcim trendom globálnej teploty v období posledných aspoň 50 rokov. Extrémne letné horúčavy (3-sigma), ktoré sa napríklad ešte začiatkom 60. rokov vyskytovali skutočne zriedkavo a postihovali spravidla len 1 % plochy pevnín, sa v súčasnosti vyskytujú už pravidelnejšie a zasahujú aj väčšie územie (~ 5-10 % plochy; Obr. 2). Medzi odbornými príspevkami dnes už nechýbajú ani analýzy poukazujúce na antropogénne príčiny tohto trendu (Jones et al 2008,  Stott et al 2011, Stott et al 2004 alebo Schär et al 2004, a ďalšie). Otázkou preto zostáva ako zásadne sa bude v podmienkach teplejšej globálnej klímy meniť aj frekvencia, ale najmä priestorový rozsah veľmi teplých periód (napr. 3- a 5-sigma udalostí). Pre tento účel autori použili výstupy mesačných odchýlok teploty vzduchu z 29 simulácií CMIP5 modelov pre dva krajné emisné scenáre (RCP2.6 a RCP8.5), pričom porovnávaná teplotná amplitúda 1-, 2-, 3- až 5-sigma udalostí bola počítaná z obdobia posledných 60 rokov (1951-2010). Viac informácií k metodike modelovania je možné nájsť v pôvodnom príspevku.


Obr. 3: Vývoj plochy pevnín [%] postihnutej 1-, 2-, 3- a 5-sigma udalosťami v období rokov 1951-2012 (vľavo) a v období rokov 2012-2100 (v strede a vpravo; Zdroj)

Scenáre do roku 2020 a 2040
Výsledky modelových simulácií sú konzistentné nielen s očakávaným rastom globálnej teploty, ale aj s už publikovanými prácami v minulosti. Modely predpokladajú v prípade udalostí na úrovni 3-sigma (ako napr. vlna horúčav z Ruska v roku 2010) rast priestorového rozsahu do roku 2020 na dvojnásobok (~ 10 % plochy pevnín) a do roku 2040 na štvornásobok (~  20 % plochy; Obr. 3) v porovnaní so súčasnosťou, a to bez ohľadu na to, ktorý emisný scenár zvolíme. Tento výsledok možno interpretovať aj tak, že dokonca aj v prípade výraznejšieho zníženia globálnych emisií CO2 do roku 2020, na priestorový výskyt vĺn horúčav to bude mať len málo významný vplyv

Zásadnejší rozdiel medzi emisnými scenármi však badať po roku 2040, kedy by malo v prípade optimistickejšieho RCP2.6 scenára dôjsť k stabilizácii výskytu 3-sigma periód na úrovni približne 20 % zasiahnutej plochy pevnín (v roku). Naopak, scenár RCP8.5 počíta s ďalším výrazným rastom, a to až do 90 % plochy pevnín do konca tohto storočia. Vlny horúčav podobné tým z roku 2010 (Rusko) sa tak podľa pesimistickejšieho výhľadu stanú do konca tohto storočia pomerne častým „letným“ javom nad prevažnou časťou pevnín, najmä v tropických oblastiach. RCP8.5 scenár dokonca počíta s tým, že 3-sigma periódy by sa v tropických regiónoch Afriky, Južnej a Strednej Ameriky či Indonézie mohli ku koncu 21. storočia vyskytovať takmer každý rok (Obr. 1). Zmeny však neobídu ani Európu. Pre obdobie letných mesiacov jún-august (JJA) počíta pesimistickejší výhľad so zvýšením frekvencie 3-sigma udalostí z 10 % (obdobie 2000-2012) na ~ 60-80 % (2071-2099). Znamená to asi toľko, že udalosti, ktoré sa v súčasnosti vyskytujú asi raz za 10 rokov, sa ku koncu storočia môžu vyskytnúť približne každý druhý rok. Tento nárast je zvlášť nápadný v južných regiónoch Európy (oblasť Stredozemného mora). 

Pochopiteľne, vyššie uvedené scenáre sú len jedným z možných variantov budúceho vývoja periód s extrémne vysokými teplotami, pričom treba do úvahy zobrať aj fakt, že použité modely CMIP5 v rámci kontrolnej klímy priestorový výskyt vĺn horúčav mierne podhodnocujú (hlavne v prípade menej extrémnych periód 1- a 2-sigma). Aj napriek tejto skutočnosti je obraz predpokladaných zmien veľmi zreteľný a jasný, a vo veľkej miere podporuje aj závery doposiaľ publikovaného výskumu vĺn horúčav.   


Literatúra
Coumou D, Rahmstorf S, 2012: A decade of weather extremes. Nature Clim. Change, 2, 491–6.
Coumou D, Robinson A, 2013: Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8 (2013) 034018 (6pp). doi:10.1088/1748-9326/8/3/034018
Coumou D, Robinson A, Rahmstorf S, 2013: Global increase in record-breaking monthly-mean temperatures Clim. Change, 118, 771–82.
Rahmstorf S, Coumou D, 2011: Increase of extreme events in a warming world Proc. Natl Acad. Sci. USA, 108, 17905–9.

Zdroje

Žiadne komentáre:

Zverejnenie komentára

Vysušovanie krajiny vs. silnejúci skleníkový efekt

Je príčinou klimatickej zmeny a globálneho otepľovania vysušovanie krajiny? V súvislosti s príčinami globálneho otepľovania a klimatick...